Alveolar-Arterial (A–a) Gradient Calculator: Essential Tool for Respiratory Assessment:

What Is the A–a Gradient?
The Alveolar-Arterial Oxygen Gradient (A–a gradient) measures the difference between oxygen concentration in alveoli (PAO₂) and arterial blood (PaO₂). This critical metric:
- Identifies causes of hypoxemia (ventilation vs. diffusion defects)
- Distinguishes pulmonary from extrapulmonary pathology
- Guides management of COPD, ARDS, pulmonary embolism
- Monitors response to oxygen therapy
Core Calculation Formulas:
1. Alveolar Oxygen (PAO₂) Calculation:
• FiO₂: Fraction of inspired oxygen (0.21-1.0)
• Patm: Atmospheric pressure (760 mmHg at sea level)
• PH₂O: Water vapor pressure (47 mmHg at 37°C)
• PaCO₂: Arterial carbon dioxide partial pressure (mmHg)
• RQ: Respiratory quotient (VCO₂/VO₂, typically 0.8)
• Determines A-a gradient (PAO₂ – PaO₂)
• Normal A-a gradient: <15 mmHg (increases with age)
• High gradient indicates gas exchange abnormality
• Used to assess respiratory failure types
• FiO₂ = 0.21, Patm = 760 mmHg
• PH₂O = 47 mmHg, PaCO₂ = 40 mmHg, RQ = 0.8
• PAO₂ = [0.21 × (760 – 47)] – (40 / 0.8)
= (0.21 × 713) – 50 = 149.7 – 50 = 99.7 mmHg
• Normal PaO₂ ≈ 80-100 mmHg → Small A-a gradient
• Patm ≈ 630 mmHg (decreases ~24 mmHg/1000ft)
• PAO₂ = [0.21 × (630 – 47)] – (40 / 0.8)
= (0.21 × 583) – 50 = 122.4 – 50 = 72.4 mmHg
• Expected PaO₂ ≈ 60-70 mmHg (normal for altitude)
• PAO₂ = [1.0 × (760 – 47)] – (40 / 0.8)
= (1.0 × 713) – 50 = 663 mmHg
• Expected PaO₂ > 600 mmHg
• If PaO₂ < 600 mmHg → Significant shunt
• Each 10% ↑ FiO₂ increases PAO₂ by ~60-70 mmHg
• Pulmonary edema: ↑ A-a gradient
• Hypoventilation: ↑ PaCO₂ → ↓ PAO₂
• High-altitude: ↓ Patm → ↓ PAO₂
• Anemia: Does not affect PAO₂ (affects O₂ content)
• Also known as the Alveolar Gas Equation
• PAO₂ determines maximum possible arterial O₂ tension
• A-a gradient = PAO₂ – PaO₂ (normal 5-15 mmHg)
• RQ typically 0.8 (carbohydrate metabolism → 1.0, fat metabolism → 0.7)
• At sea level: PAO₂ ≈ 150 – (1.25 × PaCO₂) for FiO₂=0.21
• Critical for assessing respiratory failure (Type I vs Type II)
🫁 Alveolar–Arterial (A–a) Gradient Calculator
📐 Formula:
A–a Gradient = PAO₂ − PaO₂
Where:
PAO₂ = (FiO₂ × (Patm − PH₂O)) − (PaCO₂ / RQ)
FiO₂ = Fraction of inspired O₂ (default 0.21)
Patm = Atmospheric pressure (default 760 mmHg)
PH₂O = Water vapor pressure (47 mmHg)
RQ = Respiratory quotient (default 0.8)
🖊️ Enter Parameters:
2. A–a Gradient Calculation:
3. Age-Adjusted Normal Value:
Step-by-Step Calculation Example:
Patient: 60-year-old on room air (FiO₂=0.21) with ABG:
– PaO₂ = 75 mmHg
– PaCO₂ = 40 mmHg
– Pₐₜₘ = 760 mmHg, Pₕ₂ₒ = 47 mmHg
1. Calculate PAO₂:
2. Calculate A–a Gradient:
3. Age-Adjusted Normal:
4. Interpretation:
- 24.73 mmHg > 19 mmHg → Abnormal (suggests diffusion defect)
Clinical Interpretation Guide
| A–a Gradient | PaO₂ | Interpretation | Common Causes |
|---|---|---|---|
| Normal | Low | Hypoventilation | Sedatives, neuromuscular disease |
| Elevated | Low | Diffusion defect | COPD, ILD, ARDS, PE |
| Elevated | Normal | Compensated defect | Early fibrosis, mild emphysema |
| Very High | Very Low | Shunt physiology | Atelectasis, pulmonary edema |
Key Clinical Applications:
- Hypoxemia Evaluation:
- Normal A–a gradient + ↓PaO₂ → Hypoventilation
- Elevated A–a gradient + ↓PaO₂ → Pulmonary pathology
- Oxygen Therapy Monitoring:
- Gradient >350 mmHg on 100% O₂ → Intrapulmonary shunt (>20%)
- Pulmonary Embolism Screening:
- Unexpected ↑A–a gradient + normal CXR → High PE probability
- ARDS Diagnosis:
- Gradient >200 mmHg on FiO₂ ≥0.6 supports diagnosis
Adjustments & Special Considerations
| Factor | Adjustment |
|---|---|
| Altitude | Pₐₜₘ decreases by 24 mmHg per 1000 ft ↑ |
| FiO₂ | Gradient ↑ with ↑FiO₂ (use FiO₂-specific norms) |
| Age | Add 5–7 mmHg per decade after age 30 |
| Smoking | Add 10–15 mmHg to normal values |
| Hemoglobinopathy | Invalidates PaO₂ (use O₂ content instead) |
Limitations & Best Practices
⚠️ Avoid When:
- Severe anemia (Hb <7 g/dL)
- Carboxyhemoglobin >3%
- Methemoglobinemia
- Technical errors in ABG sampling
✅ Essential Checks:
- Verify ABG sample anaerobic
- Correct for body temperature
- Use measured FiO₂ in ventilated patients
Why the A–a Gradient Matters
Specialty Applications:
- Critical Care (ARDS management)
- Pulmonology (ILD workup)
- Anesthesiology (perioperative hypoxia)
- Aviation Medicine (altitude sickness)
Access Calculator:
Enter FiO₂, PaO₂, PaCO₂, age → Get A–a gradient + interpretation
✅ Key Features:
- Age-adjusted normal ranges
- Altitude compensation
- FiO₂-specific interpretation
- Exportable clinical reports
Disclaimer:
- Assumes RQ=0.8 (respiratory quotient)
- Correlate with imaging/pulmonary function tests
- Clinical context supersedes calculator output





